

PERFORMANCE ANALYSIS OF BENCHMARK PLANT FOR SELECTIVE LITHIUM RECOVERY FROM SEAWATER

Kazuharu YOSHIZUKA

Faculty of Environmental Engineering, The University of Kitakyushu

Marek HOLBA, Takeshi YASUNAGA, Yasuyuki IKEGAMI

Institute of Ocean Energy, Saga University

yoshizuka@env.kitakyu-u.ac.jp

Application Fields of Lithium

Light alloy mixed with Al for aircraft

Electric vehicle without emission

Next energy fuel for nuclear fusion

Rechargeable battery of mobile IT devices

Recovery of Lithium from Seawater

Since the concentration of lithium ion in seawater is quite low (0.1-0.2ppm) as well as that of sodium ion is extremely high (10,800ppm), selective recovery method of lithium ion should be developed.

Ion exchange recovery method using MnO_2 type adsorbent having spinel structure (λ - MnO_2)

This adsorbent can be synthesized from lithium manganese oxide (Li_xMn_yO₄) using ion exchange of Li⁺by H⁺.

Economical Potential of Lithium Recovery from Seawater

Adsorbent Having High Selectivity for Lithium Ion Spinel Type Li_xMn₂O₄

Ion Size Memorized Adsorbent

Synthesis of Li_xMn_yO₄ and λ-MnO₂

 Mn_3O_4

+

LiOH·H₂O

Molar ratio Li: Mn = 1:2 or 1.5:2

Mixing & Grinding (15min)

Pre-sintering

425°C, 5h

Slow-cooling at room temp. for 1.5h

Mixing & Grinding (15min)

Main-sintering

500°C, 5h

Slow-cooling in electric oven for 12h

 $Li_xMn_2O_4$

Acid treatment by 1M HCl

To keep the crystal structure, stirring in acid solution of molar ratio [Li+]: [H+] = 1:40 for overnight (Several times repeating)

 λ -MnO₂

Ion-recognizable adsorbent of Li+

pH Dependency of Lithium Adsorption

Influence of Metal Ions on Lithium Adsorption

Granulation of Adsorbent for Column Packing

LiCl 0.25g + Chitin 0.05g in N-methyl 2-pyrrolidinone 5ml

+λ-MnO₂ 5g under stirring

+ 2-propanol

Precipitation

vacuum filtration, rinse with deionized water, dry at 60°C

1wt.%Chitin-granulated adsorbent

SEM image of granulated adsorbent (x60)

Photograph of granulated and powder adsorbents

Column Apparatus for Lab Scale Experiment

Column Separation of Lithium from Seawater

Aq. Soln.: Artificial seawater (pH=8.1), Adsorbent wt.: 3.0g,

Flow rate: 0.33cm³/min, Elutant: 1.0 mol/L HCl

Benchmark Plant of Lithium Recovery from Seawater in IOES

Performance of Equipment

Adsorbent weight: 60 kg

Adsorbent volume: 0.6 m³

Eluting aq. soln.: 0.8 M HCl

Flow rate of seawater supply: 200 L/h

Benchmark Plant of Lithium Recovery from Seawater in IOES

Performance of Equipment

Adsorbent weight: 60kg x 2 columns

Adsorbent volume: 0.6m³ x 2 columns

Eluting aq. soln.: 1-0.2M HCl

Flow rate of seawater supply: 200L/h

Benchmark Plant of Lithium Recovery from Seawater in IOES

Adsorption Column

Evaporation Crystallizer

Breakthrough Curve of Lithium Using Benchmark Plant for 150 Days Operation (2004/12/21~2005/7/13)

Evaporated Salt Obtained from 150 Days Operation

Dried precipitate 791g

The Components of the Precipitate Salt Obtained from 150 Days Operation

Element	Content [wt%]	Concentration ratio [%]	Content in seawater [wt%]
LiCI	33.3	11,000	0.003
NaCl	20.4	0.26	78.1
KCI	3.3	0.94	3.5
MgCl ₂	8.2	0.57	14.3
CaCl ₂	13.4	4.11	3.26
MnCl ₂	19.4		n.q.
SrCl ₂	2.0	50.0	0.04

Performance of Lithium Recovery from Seawater

1 cycle of adsorption stage would be required to 10 % of breakthrough of Li⁺ concentration:

Li⁺ Adsorption stage: 80 m³ (400 h)

washing stage: 1 m³ (5 h)

Elution stage: 0.6 m³ (3 h)

Adsorbent washing stage: 1 m³ (5 h)

1 cycle of full operation = 413 h (18 days)

20 cycles of full operation / year 5 kg of LiCl

Economical Analysis of Lithium Recovery

Analysis software: Powersim

	Unit	Present	Proposed
		case	case
Adsorbed Li	g/year	450	5,300
Energy consumed	kWh	165,400	34,100
Water consumed	m ³	13,300	34,100
Energy requirements	kWh/g-Li	385	80

Energy requirement can be reduced to 1/5.

Multiple Utilization of Ocean Energy and Resources

Multiple Utilization of Ocean Energy and Resources

